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The problem of axisymmetric flow of air between a flat wall and an elastic 
ring diaphragm is considered. Approximate Reynolds equations for the flow of 
an incompressible lubricant and equations of the zero- moment theory of large 

deflections of a plate are used. The system of two nonlinear differential equa- 
tions is solved by the method of external and internal expansions. Formula for 
the determination of the smallest ring gap is derived. The external problemis 

reduced to a variational one and solved with the use of Legendre polynomials. 
Results of calculations are compared with data obtained by specialexperiments. 

The results presented here may prove useful for analyzing the operation of 
the air-cushion type of equipment used for moving heavy objects on the shop 

floor. In such equipment the upper cushion boundary consists of an elastic dia- 

phr agm. 

1. The aerostatic support (AS) is diagrammatically shown in Fig. 1. An elastic dia- 

phragm is attached to the lower side 
of a disk at its center by a clamping 
plate of radius a and at the periphery 

by a clamping ring of inner radius b - 

Fig. 1 

In the undeformed state the diaphragm 
is pressed to the disk. The space bet- 
ween the bearing surface and the dia- 
phragm, which we shall call the ” air 
cushion”, is connected to the com- 

pressed air system via a central hole 

and a number of holes in the diaphragm. The space between the disk face and the dia- 
phragm, which we shall call “the container ‘; is connected to the external compressed air 
system through a number of other holes. When the resulting pressure force in the aircu- 
shion exceeds the load on the AS, the equipment is lifted with its load, and the supplied 
air escapes into the atmosphere through the circular gap between the diaphragm and the 

bearing surface (see, e. g., Cl]). 
The air flow in the air cushion is accompanied by formation of boundary layersonthe 

diaphragm and on the bearing surface. Both layers merge in the neighborhood ofthe mi- 

nimum gap which is of the order of 0.1 mm. Reynolds equations for the axisymmetric 
flow of an incompressible fluid may be used for determining the flow of gas in the neigh- 
borhood of the minimum gap at r = ro,. These equations with allowance for averaged 

terms of acceleration yield for the pressure drop the following equation: 

dp 12pv _=--A 
dr ha 

(1.1) 
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where f~ is the coefficient of dynamic viscosity and u is the average velocity related 
to the rate of flow Q and the varying thickness h of the layer. 

Since the axial displacement of points of the elastic boundary 1~; are not small in com- 
parison with the diaphragm thickness 6, it is necessary to resort to the theory of large 

deflections of plates developed by Timoshenko [a]. Below we use the simplified theory 
of large deflections of plates on the assumption that the effects of bending moments %,. 
and M, , and of viscous forces acting on the diaphragm owing to the flow of air in the- 
air cushion can be neglected. On these assumptions the equations of equilibrium of for- 
ces per unit of length of the meridional cross section curve of the deformed plate redu- 
ces to the single equation for the radial tension 

(1.2) 

where p is the pressure in the air cushion on the lower side of the diaphragm and pz is 

the pressure in the container on the upper side of the diaphragm. 

Hooke’s law and the equation of equilibrium which relate the radial and lateral ten- 

sions, yield the following differential equation: 

(1.3) 

Equations (1.1) and (1.2) were numerically integrated in [S] on the assumption of con- 
stant radial tension throughout the air cushion, and experimental data on the diaphragm 

deflection and its slope at an intermediate point r (a < r < ro) were used instead 

of Eq. (1.3). 
No experimental data are used below, and all three equations are considered,using the 

method similar to that of external and internal expansions. In the external expansion 

the thickness of the air cushion layer near the smallest circular gap, where the pressure 

sharply drops to atmospheric pressure pa, is taken as the small parameter. In the first 

approximation the pressure is assumed to be piecewise constant,and the radius r, at which 

the pressure jump occurs is not a priori known. The diaphragm shape and me arising 
tensions are determined by Eqs. (1.2) and (1.3) and the fastening boundary conditions 

w=o for r = a, r=b (1.4) 

and also the condition of absence of lateral deformations at fastening boundaries 

dldr (rN,) - vN, = 0 for r = a, r = b (1.5) 

where v is the Poisson’s ratio. 
In the internal expansion the layer dimension is extended near the minimum ring gap, 

and it is assumed that tension iv, and raduis r vary only slightly. 

2. Since the pressure in the layer sharply alters in the neighborhood of the minimum 
gap and the relative variation of tension N, and radius r are small, it is possible to sub- 

stitute in the first approximation in Eq. (1.2) No and ia for these two parameters. The 
differentiation of Eq. (1.2), cifter that substitution, and the use of Eq. (1.1) yields the 
third order differential equation 

(2.1) 
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Y=$ r - r. 
5=-, 

xr,fv,h,4 

0 h 
h” = slrQ 

The following relation was also used: 

h $- 1c = H = const z II - ho 

where 11 is the floating platform height and hoeis the thickness of the layer at the mi- 

nimum gap circle. 

For thecharacteristic parameters of AS the coefficient A varies within the limits 
0.2 - 0.4. Hence Eq. (2.3) can be solved by the method of successive approximations 
with respect to parameter A. The first approximation equation (for A = 0) can be re- 
duced to a first order equation by two successive substitutions. We assume 

dyldz = c (y) !I-“2 
Then 

d% -= 
da+ 

cy-‘/a y-‘/a dc 
[ dy 

- + cy-‘5 1 = xy+i 
x(c)= ye-g+ 

Using (2.2) and (2.3) we obtain the following first order equation: 

(2.2) 

(2.3) 

dx 3 + 5cx 
- = 3% + c.2 dr 

(2.4) 

The field of integral curves of Eq. (2.4) is shown in Fig. 2. The separating curve LM 
in Fig. 2 corresponds to the case in which the difference of pressure p1 in the cushion 

and p2 in the container vanishes when x .-+ - OC, . The curves above LM relate to 

(Pr - pl) > 0, while those below it “coil” around focus K. Such behavior of integral 
curves indicates that the mode p2 - p1 = 0 is not stable,since in the small neighbor- 
hood of that mode the curve of the diaphragm r;:eridional cross section has inflection 

points at which dtY / dx2 = 0 or x = 0. 
Asymptotics of curves lying above LM when c -+ I_ 00 are defined by 

The asymptotics of curve LM when c -+ - co is of the form 

&+& t-) 

The inversion of expansion yields 

(2.6) 

On the basis of notation in brackets in (2.1) we have the following conditions for func- 

tion y: 
dy ‘dz 0 for s--o, !/ -1 (2.7) 

or 
c===O for Y =I 

Boundaries of the considered viscous layer correspond to infinitely high values of the in- 
ner variable 5. Using Eq. (1.2) and the indicated above notation, we obtain the follow- 
ing asymptotics : 
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]im d2Y _ Pn-PIX A2 

x--r c1, dra - -‘V&o 
(2.8) 

Equation (2.1) is of the third order and there are four boundary conditions (2.7) and 
(2.8). These conditions are, generally speaking, incompatible, except when the coeffici- 

ent h0iV,h-2 has a specific value which depends on the ration (pa - p&a - pa)-‘. 
The determination of this exceptional value of the indicated coefficient establishes the 
sought dependence of the minimum gap on parameters of the AS. 

From the last equality in (2.3) we have 

and taking into consideration conditions (2.7) we obtain 

Iny = &x+ c2)-1dC 
0 

(2.9) 

For the application of formula (2.9) it is necessary to have the expansion of function X 
for small values of C. It is obtained by representing 2 in the form of a series in positive 

powers of c and the determination of its coefficients by substituting it into Eq.( 2.4). We 
have 

X=x0+ 

The continuation of expansion (2.6) to c + - 0 yields with some error x0’ Z ‘/a. 
Further calculations can be carried out with the use of equality (2.9) and asymptotics 

(2.5). We obtain dY d% 
z-,1, s”: for 2-+-co (2. xl) 

The limiting equalities (2.11) and Eq. (1.3) yield for the pressure drop in a viscous layer 

the following expression: dP = pI 
-Pa = ~.9~~~o~-2 

from which we obtain 

(2.12) 

The numerical integration of Eq. (2.1) for d = 0.3 yields an i~i~ificant difference: 
the coefficient 1.9 in formula (2.12) is replaced by 1.79. 

Theoretical curves of pressure distribution (curve 2) and of the diaphragm profile near 
the minimum gap (curve I) are shown in Fig. 3 by dash-dot lines. Solid lines relate to 
respective experimental curves. It is seen that the calculated data are in a satisfactory 
agreement with experimental results. 

The load carrying capacity G of an aerostatic support is related to the pressure in the 

cushion by formula 
G = a1”02 (PI - ~a) 

It will be shown below that tension No is related to the load by formula 

where the coefficient n varies between 0.15 and 0.11 when a I b (the ratio of internal 
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radius to the external one) varies from 0.2 to 0.3. 

Fig. 2 Fig. 3 

Q M~/UUS’ The expression for the determination of the 
minimum gap assumes the form 

-$ = 3.6[$$(y)‘!iy” (2.13) 

0.7 
which makes it possible to establish the pos- 
sibility of using aerostatic supports for a given 
degree of floor roughness. 

Calculated and experimental rates of flow 

Q (curves 4 - 6) and of load G (curves l- 

6 

3) are shown in Fig. 4 for a support with pa- 

rameters b = 302 mm and a/b = 0.141. 

3, The shape of the air cushion elastic 
boundary in the neighborhood of the mini- 

Z 0. I 
mum gap was calculated on the assumption 

d(lc: 006 0.70 of piecewise constant pressure which for F 

Fig. 4 
varying from a to F. equals pl, and for the 
variation of r from F0 to b is eqUa1 to at- 

mospheric pressure pa. It was also assumed that PI = Pa , and the effect of viscosity 
forces on the diaphragm was disregarded. 

We introduce new variables 

2 (9 - aa) 2&V, 
b2 - a2 

--1=z, 
ES (b2 - a2) 

= N, q = b+ (3.1) - 

In these variables Eqs. (1.2) and (L4) and boundary conditions (1.5) assume the form 

- pa) vb2 - a2 
A = @’ 8EB , q = e (3.2) 

a 

$+(.qLo (3.3) 

4(rl-1) g = (1 +Y)N for 2x-t (3.4) 
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(1fv)N for z==+t (3.5) 

We solve Eq. (3.3) for iv with allowance for boundary conditions (3.4) and (3.5) and 
obtain 

(1 -+) N = -(I -Y") i (z -z') (.z)"&' -t- (3.6) 
-1 

By subsisting for N its expression (3.6) into Eq. (3. Z), we obtain for dW / & an in- 

tegral equation. 
We have the following theorem: out of all possible profiles of considerable deflections 

of a ring diaphragm with fixed borders the functional 

@=J-_AtSl@VdZ 
--L 

for real deflections has a minimum, where 

Equating to zero the first variation of d> for any arbitrary J$’ with an inte~rablesquare 
of the derivative, this theorem yields Eq. (3.2) in which expression (3.6) is substituted 

for fi 
The indicated theorem makes it possible to obtain approximate solutions of Eqs.(3.2) 

and (3.3) of the form 

(3.3) 

where the set of functions fk (2) is assumed orthonormal along segment (-- 1, fl) 
and f. (z) = ?-“2. 

By virtue of this theorem the differential equations (3.2) and (3.3) are equivalent to 

the infinite set of algebraic equations +l 
&i 

-=A. ~(Z~~~~~)~~, h-=1,2.. cfnk. s 
--I 

We select the normalized Legendre polynomials 

(3*9) 

Iii (2) = I/ %p Pfc(z) 



Motion of a viscous gas in a Layer 295 

as functions. fk (2) t and restrict expansion (3.8) to the first two terms. We obtain 

The substitution of (3,lO) into (3.7) yields 

4J= Zq-1 I( 
I( 

- +) (9 + t”> -t_. 2 (1 + v) $.gJ 

2q+--+5) 

1 - vz 

k2 -+- q -t+ 2 (I + Y) $L] + 

2 C 

(3. IO> 

X (3. II) 

In conformity with (3.9) we have for the coefficients s and t the system of equations 

(3.W 

(3.13) 

Functions 8J I ds and aJ / dt are homogeneous third power polynomials, hence the 
ratio of dJ / $8 to aJ / dt depends only on the ratio t i s = y. 

To determine the radius of maximum deflection z, we equate CZW / dz to zero and 
obtain 

(3.14) 

In conformity with the assumption about the piecewise constant pressure we assume 

Dividing (3.13) by (3.12>, we obtain 

ICC, + 3a,y + cxgy2 + a,y31(hx, - 2.231-‘(l- v2)lys + (3.15) 
3a,y2 + a3y + a&l = 0.485 (1 + 2# (1 + z(j / 2)-l 

ax = (2q - 1)s - (Y), - -g (1 - v2), a, = (~+~)(2~-~) / V-G 

a3 = (2q - I)a -+- $- (1 -j- V)” - (+y - v 

Equations (3.14) and (3.15) form a closed system of algebraic equations for the deter- 
mination of y and zo. Having determined y and z. we find s by using one of Eqs. 
(3.1% The results may be presented in the form 

(3.16) 
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where wOis the maximum deflection of thediaphragm, N1 and Ns are tensions at the 
inner and outer boundaries of restraints, and n,, TQ, n3 and n, are dime~ionless coeffi- 

cients which depend on a / 6. Values of these coefficients and of y and z, are given 

in Table 1 for v = 0.47, 

atb 

0.184 
0.221 
0.26 
0.343 

ni 

0.13 
0.121 
0.113 
0.097 

10.0 6.3 1.78 
10.9 7.08 1.73 
11.6 7.7 1.67 
14.2 9.95 1.55 

- 

x* I - 
0.1 

0.12 
0.14 
0.2 

Table 1 

Y 

0.16 
0.195 
0.23 
0.352 

4. To check the validity of ~mptions made in the derivation of formulas (2.3) and 

(3.16) experiments were carried out with aerostatic supports. The range of loads was 
160-1800 kg and the air flow rate was 0.2- 0.56 ms / min. The static pressure p and 
the clearance la between the Dural base plate and the 3 mm thick rubber diaphragm 

were measured in the neighborhood of the minimum gap. 

Since at some modes the ~nimum gap 
did not exceed a few hundredth of a milli- 

meter, measurement of h had presented 
considerable difficulties. None of the me- 
thods of small gap measurement described 
in [4] could be used. The mechanicalcon- 
tact of a mobile needle with the diaphragm 

was used. The needle was supported by a 

Fig. 5 
spring held on a bracket attached to the un- 
derside of the mobile top of the stand, and 

could freely move in the vertical direction. 
The sensing element of a straingauge was glued to the. spring. The ~forma~on of the 
spring by the contact of the needle with the diaphragm was transferred to an oscillogram 
via. the strain gauge, amplifier and oscillograph. 

A typical oscillogram is shown in Fig. 5. 
It is seen from the oscillogram that in the radial direction the lengthofthesectionalong 

which the pressure drop (from pr inside the cushion to the atmospheric pressure pa) is equal 

4mm. This length varies c~iderably with the change of ex~ri~ut~c~~ it decreases 
with increasing load and increases with increasing flow rate. The radius Q of the mini- 
mum gap is smaller than radius i? at which the pressure drops to atmospheric. For prac- 
tical calculations it can be assumed that R = ro. Under conditions of higher air flow 
rates a zone of rarefaction at the exit of air from the minimum gap is observed. This is 
explained by the inertia of the flowing air. The length of such zone is 2 - 2.5 mm. 
This justifies the gumption made in Sect. 2 about incompr~ibi~ty and thesmall effect 

of the inertia term in Eq. (2.3). 

The authors thank L. I. Sedov and L. A. Galin for discussing this work and remarks, 
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